Surface Modified Ferritin

Nanocages for Imaging and Drug Delivery

tumor

Jin Xie

Department of Chemistry Bio-Imaging Research Center The University of Georgia

Apoferritin Nanocages

Unique self-assembled nanostructures

- Self-assembled by 24 subunits
- Large cavity, 8 nm inner diameter
- Rigid under physiological environments
- Decomposed at pH=2 but reversible

Activatable Imaging Probes

Quenching mechanisms:

- Self-quenching
- Small molecule quencher
- Gold nanoparticles

Advantages:

- Low background
- High sensitivity
- High specificity

Ferritin-Based Activatable Nanoprobes

Lin X, Xie J et al. Angew Chem Int Ed, $201\overset{4}{1}$.

Real-Time Quenching and Activation

In Vivo Studies in 22B SC Models

Lin X, Xie J et al. Angew Chem Int Ed, 201^{\circ}1.

Ferritin-Based Multimodal Imaging Probes

- Two surfaces: exterior surface and interior surface
- Chemical and genetic modifications
- Metal cations can be encapsulated into the interiors

7

In vitro binding assay and stability test

Lin X, Xie J and et al. *Nano Letters*, **2011** *11*, 814-9

In Vivo PET and NIRF Imaging

Doxorubicin-Loaded RGD-Ferritin NPs

Doxorubicin-Loaded Apoferritin Nanoparticles

6 h

12 h

24 h

48 h

Biodistribution Studies

Therapeutic Study Results

Immunostaining: Tumors

Immunostaining: the Heart

H&E Staining Results

Conclusions

- Ferritin nanoparticles can be genetically and chemically modified, making them attractive nanoplatforms with potentials in imaging and drug delivery.
- Each ferritin nanoparticle is comprised of 24 subunits, which selfassemble into a nanostructure. The nanostructure is rigid in physiological environment but can be broken down in an acidic solution. The process is pH-dependent and reversible, affording a easy way of constructing hybrid nanostructures.
- In addition to iron, other transition metal isotopes, such as ⁶⁴Cu, can be encapsulated into ferritin interiors.
- Small molecule drugs, such as doxorubicin can be loaded onto ferritins with high efficiency.

Acknowledgements

Group members

Zipeng Zhen Hongming Chen Trever Todd Taku Cowger Wei Tang Rodrigo Tapia Aftab Fazal Gemille Walker

Collaborators

Zhengwei Pan Yen-Jun Chuang Qun Zhao Luning Wang Chunlian Wang Xiaoyuan Chen Fan Zhang Yanglong Hou

Pathway to Independence Award (K99/R00)

